Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
N incorporation mechanisms in GaAs1−xNx alloys are probed using combined experimental and computational Rutherford backscattering spectrometry and nuclear reaction analysis angular yield scans. For xN < 0.025, in addition to substitutional nitrogen, NAs, (N-N)As, and (N-As)As split-interstitials are observed. However, for xN ≥ 0.025, evidence for N tetrahedral interstitials, Ntetra, emerges. We propose a mechanism for stabilization of Ntetra in which the elastic interaction between Ntetra and NAs is induced by the opposite signs of their misfit volumes. This work opens opportunities for exploring the formation of Ntetra and its influence on the properties of a variety of highly mismatched alloys.more » « less
-
Abstract Salt marshes are threatened by rising sea levels and human activities, and a major mechanism of marsh loss is edge retreat or erosion. To understand and predict loss in these valuable ecosystems, studies have related erosion to marsh hydrodynamics and wave characteristics such as wave power. Across global studies, erosion is reported to be largely linearly related to wave power, with this relationship having implications for the resilience of marshes to extreme events such as storms. However, there is significant variability in this relationship across marshes because of marsh heterogeneity and the uniqueness of each physical setting. Here, we investigate the results of individual studies throughout the world that report a linear relationship and add a new dataset from the Great Marsh in Massachusetts (USA). We find that most marsh wave power and erosion data are not normally distributed and when these datasets are properly plotted to account for their distributions, the resulting relationships vary from previously published curves. Our Great Marsh data suggest that events from specific wind directions can have an outsized impact on edge erosion due to their larger fetch and wind speeds. We also find that factors other than wave attack such as edge erosion along tidal channels, can have a measurable impact on retreat rates. We show the importance of maintaining statistical assumptions when performing regressions, as well as emphasize the site-specificity of these relationships. Without calibration of a marsh erosion-wave power relationship using robust regressions for each individual marsh, such a relationship is not fully constrained, resulting in unreliable predictions of future marsh resilience and response to climate change.more » « less
-
Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « less
-
A first search for beyond the standard model physics in jet multiplicity patterns of multilepton events is presented, using a data sample corresponding to an integrated luminosity of of 13 TeV proton-proton collisions recorded by the CMS detector at the LHC. The search uses observed jet multiplicity distributions in one-, two-, and four-lepton events to explore possible enhancements in jet production rate in three-lepton events with and without bottom quarks. The data are found to be consistent with the standard model expectation. The results are interpreted in terms of supersymmetric production of electroweak chargino-neutralino superpartners with cascade decays terminating in prompt hadronic -parity violating interactions.more » « less
-
A search for the rare decay is reported using proton-proton collision events at collected by the CMS detector in 2022–2023, corresponding to an integrated luminosity of . This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses mesons obtained from decays. No significant excess is observed. A limit on the branching fraction of at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.more » « less
-
A<sc>bstract</sc> A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg → A, and in association with bottom quarks,$$\text{b}\overline{\text{b}}\text{A }$$. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb−1collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of$$\sqrt{s}=13$$TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A → Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg → A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the$$\text{b}\overline{\text{b}}\text{A }$$process in the probed range of the A boson mass,mA, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the$${\text{M}}_{\text{h},\text{EFT}}^{125}$$benchmark scenario of the minimal supersymmetric extension of the standard model. Values of tanβbelow 2.2 are excluded in this scenario at 95% confidence level for allmAvalues in the range from 225 to 350 GeV.more » « less
-
A<sc>bstract</sc> A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at$$\sqrt{s}=13$$TeV, corresponding to an integrated luminosity of 138 fb−1. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV.more » « less
An official website of the United States government
